Über (Pentafluorphenyl)thiocarbonyl-Verbindungen sowie die Synthese und Struktur von (Pentafluorphenyl)phenylsulfin

Jens Hasserodt, Hans Pritzkow¹¹ und Wolfgang Sundermeyer*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg 1

Eingegangen am 8. Februar 1993

Key Words: Thiocarbonyls, (pentafluorophenyl)- / Sulfine / Pentafluorothiobenzaldehyde anthracene adduct

(Pentafluorophenyl)thiocarbonyl Compounds, Synthesis and Structure of Pentafluorophenyl Phenyl Sulfine

The C_6F_5 -substituted thiocarbonyls C_6F_5 -CS-R [R = C_6H_5 (2), CH₃ (4)] are synthesized from the corresponding carbonyl compounds by using in situ formed B_2S_3 . The corresponding highly reactive thioaldehyde (R = H) is trapped with anthracene as Diels-Alder adduct 7. By oxidation of 2 sulfine 10 is generated

Das Strukturelement $(F_5C_6)C(S)$ – ist bisher unbekannt. Im Zuge unserer Studien von teil- und perhalogenierten CSungesättigten Verbindungen^[2,3], welche auch als Synthesebausteine für schwefelhaltige Heterocyclen eine wichtige Rolle spielen, interessierte uns, inwieweit die desaktivierten Carbonylverbindungen mit einem oder zwei Pentafluorphenyl-Substituenten in ihre Thioanaloga überführbar sind. Erfahrungsgemäß sinkt die Stabilität von Thiocarbonylverbindungen in der Reihe: Aryl-, Amino- > Alkoxy-, Alkylthio-> Halogen-, Trifluormethyl- > Alkyl- > H. Gruppen mit mesomeren und in geringerem Maße mit negativ induktiven Effekten können also Thiocarbonyle stabilisieren^[4]. Daher erwarteten wir im Vergleich zu phenylsubstituierten Spezies stabilere Produkte bei den C₆F₅-Derivaten. Darüber hinaus läßt die C₆F₅-Substitution erwarten, daß die betreffenden Thiocarbonylverbindungen wegen der intermolekularen elektrostatischen Abstoßungskräfte eine geringere Neigung zur Oligo- oder Polimerisation zeigen. Eine Reihe Thionierungsreagentien unterschiedlicher Reaktivität wurden in der Literatur beschrieben, von denen Phosphor-Schwefel- und Bor-Schwefel-Verbindungen in dieser Arbeit zur Anwendung kamen.

Thionierungsreaktionen

Die bekannten Thionierungsmittel P_4S_{10} und "Lawesson Reagens" (LR)^[5] sowie das in situ dargestellte $B_2S_3^{[6a,6b]}$ wurden auf ihre Wirksamkeit gegenüber (F_5C_6)C(O)R [$R = C_6H_5$ (1), CH₃ (3), H (6)] überprüft. Die Umsetzung von 1 und 3 führt weder mit P_4S_{10} noch LR in siedendem Toluol zur Bildung von 2 bzw. 4, wie die Untersuchung mittels ¹⁹F-NMR-Spektroskopie und DC sowie die fehlende Einfärbung der Reaktionsmischung zeigt. Erst die Verwendung von Bis(tricyclohexylstannyl)sulfan (BTCSS) in Kombination mit BCl₃, künftig kurz "B₂S₃" genannt, brachte den gewünschten Erfolg. Dieses Reagentiensystem beweist einmal mehr seine positiven enthalpischen Eigenschaften^[7] im which dimerizes in the crystal lattice. An X-ray crystal structure determination of a trithiaphosphinane **9** was carried out for the first time. The bis-*para*-substituted compound **12** is obtained from perfluorobenzophenone and hydrazine hydrate in a fast reaction.

Vergleich zu Phosphor-Schwefel-Reagentien. 3 reagiert mit "B₂S₃" schon in siedendem CCl₄ zu violettem 4. Für die Synthese des blauen 2 sind dagegen ausgedehnte Reaktionszeiten von über 24 h in siedendem Toluol notwendig und führen laut ¹⁹F-NMR-Spektrum zu 65% Umsatz. (Zum Vergleich: Benzophenon reagiert mit "B₂S₃" innerhalb von 2 h in siedendem Toluol^[6b]). Verwenden von Xylol zum Steigern der Reaktionsgeschwindigkeit führt zu spürbarer Zersetzung. Im Falle von 6 ist neben dem stärkeren Sulfurierungssystem "B₂S₃" auch LR brauchbar.

Nach Beendigung der Reaktionen zu 2 und 4 und Entfernen des Lösungsmittels im Vakuum muß das tieffarbige Thioketon zügig mit Methanol aus dem festen Rückstand extrahiert werden, wobei die Unlöslichkeit von Tricyclohexylzinnchlorid in polaren Lösungsmitteln sehr vorteilhaft ist. 2 erweist sich bei der Chromatographie an Kieselgel als wenig luftempfindlich im Vergleich zu Thiobenzophenon (Lösungen von 20 mg 2 in 10 ml CH₂Cl₂ entfärben sich erst innerhalb von 2 Tagen an der Luft). 2 zeigt eine geringere Farbintensität bei gleichkonzentrierten Lösungen gegenüber Thiobenzophenon, was auch durch die Thiocarbonyl-UV-Bande bei^[9,10] $\lambda = 605.6$ nm mit $\varepsilon = 67$ gegenüber $\varepsilon =$ 181 des Thiobenzophenons ($\lambda = 599$ nm) bestätigt wird; die bathochrome Verschiebung ist bei Elektronen-ziehenden Substituenten zu erwarten^[8].

4 ist eine violette Flüssigkeit, von der nur die ¹⁹F-NMR-Daten aufgenommen werden konnten. Nur durch Umkondensieren ist 4 vom Lösungsmittel zu befreien, da es sich beim Erwärmen auf Raumtemperatur langsam entfärbt und sich farblose Kristalle bilden. Anhand der Struktur des Disulfids 5 muß angenommen werden, daß es durch schnellen nucleophilen Angriff des nicht faßbaren Enthiols 4a auf das Thioketon 4 entsteht^[9,10].

Pentafluorbenzaldehyd (6) reagiert mit LR zum hochreaktiven Pentafluorthiobenzaldehyd, welcher sofort mit Anthracen zu 7 abgefangen werden muß. Andernfalls entsteht eine Vielzahl noch nicht identifizierter Produkte. Ein 1702

Trimer des Pentafluorthiobenzaldehyds wurde nicht beobachtet. Man darf nur in siedendem Benzol arbeiten. Höhere Temperaturen führen zu Zersetzung. 7 ist ein stabiles Hetero-Diels-Alder-Addukt, das bei Erwärmen auf 100°C in Toluol den Thioaldehyd freisetzt, der in situ mit geeigneten Partnern reagiert^[11]. Bei der Vakuum-Pyrolyse von 7 konnte Pentafluorthiobenzaldehvd weder monomer noch als Trimer nachgewiesen werden. Seine hohe Reaktivität (zum Vergleich die bemerkenswerte Stabilität des 2,4,6-Tri-tertbutylthiobenzaldehyds^[12]!) sowie seine geringe Flüchtigkeit im Gegensatz zu aliphatischen Vertretern^[3] führen dabei zu sofortiger Polymerisation. Nach Aufnehmen des Gemisches in CH₂Cl₂ (auch das Polymer des Thiobenzaldehyds ist in CHCl₁ löslich^[13]). Abtrennen des Anthracens durch Zusatz von n-Hexan und Eindampfen der Mutterlauge verbleibt ein farbloses Öl. Dessen Fragmentierungsschema im Massenspektrum, das Fehlen eines Molekülpeaks für das Trimere und die ungewöhnliche Breite der Signale im ¹⁹F-NMR-Spektrum deuten auf das Vorliegen eines Polymers 8 hin. In der nachgeschalteten Kühlfalle konnten nur geringe Mengen an 8 aufgefangen werden, dessen ¹⁹F-NMR-spektroskopische Verschiebung reproduzierbar ist. Treibt man dagegen 7 mittels eines Trägergasstromes durch ein auf 300°C geheiztes Quarzrohr, so erhält man vorwiegend Decafluorstilben^[14], wie durch Massen- und ¹⁹F-NMR-Spektroskopie nachgewiesen wurde.

Eine für Thionierungen mit LR in einigen Fällen bekannt gewordene Nebenreaktion, die in Ausnahmefällen auch die Hauptreaktion darstellte^[15,16], führt bei der Synthese von 7 in nur 3.5proz. Ausbeute zu dem nach chromatographischer Reinigung vollständig charakterisierten 9. Die unseres Wissens nach erste Röntgenstrukturbestimmung eines Trithiaphosphinan-Systems, das in der Sesselform mit den Phenyl-Substituenten in der äquatorialen Position vorliegt, konnte nach Kristallisation in Toluol/*n*-Hexan durchgeführt werden (Abb. 1).

Abb. 1. Molekülstruktur von $9^{[17]}$. Ausgewählte Abstände [Å] und Winkel [°]: P–S 2.102–2.113(2), P=S 1.936, 1.937(3), P–C 1.777, 1.782(4), S–C 1.816–1.851(6); P–S–C 96.4–98.2, C–P–C 99.1, 100.1(3), S–P–S 102.9–103.9(1)

Abb. 2. Projektion der Elementarzelle von 10 in Richtung der *b*-Achse^[17]. Ausgewählte Abstände [Å] und Winkel [°]: S1–O1 1.477(2), S1–C1 1.627(3), C1–C2 1.477(4), C1–C8 1.481(4), S1–O1' 3.114(3); O1–S1–C1 112.4(1), S1–C1–C2 121.2(2), S1–C1–C8 117.8(2), C2–C1–C8 121.0(2)

(Pentafluorphenyl)phenylsulfin

Aus 2 wird mittels einer Persäure im Unterschuß^[18] das Sulfin 10 dargestellt, das durch Chromatographie und anschließende Kristallisation unter Lichtausschluß in farblosen Nadeln anfällt. Die durch Röntgenstrukturanalyse festgestellte Z-Konfiguration von 10 entspricht nicht den Erwartungen (Abb. 2). Eine sterische Hemmung durch die Pentafluorphenyl-Gruppe verhindert offenbar nicht die Bildung des Z-Produkts, obwohl für das Sauerstoffatom und das benachbarte Fluoratom eher eine abstoßende Wechselwirkung angenommen werden muß. ¹⁹F-NMR-spektroskopisches Verfolgen der Reaktion ergibt jedoch keine Anhaltspunkte für die Bildung eines weiteren Diastereomers (vgl. hierzu auch Lit.^[19]). Die Moleküle sind über schwache S–O-Kontakte zu Dimeren verknüpft (Abb. 2). Die intermolekularen S–O-Abstände (3.11 Å) liegen deutlich unter der Summe der van der Waals Radien und zeigen schwache Dipolwechselwirkungen zwischen den Sulfingruppen an. Eine solche Anordnung wurde im Falle des Diphenylsulfins nicht beobachtet^[20].

$$\begin{array}{c} F_5C_6\\ H_5C_6 \end{array} C = S \qquad \xrightarrow{R-COO_2H/Et_2O} \qquad \begin{array}{c} F_5C_6\\ H_5C_6 \end{array} C = S \\ \begin{array}{c} 2\\ R = 2-Carboxyphenyl- \end{array}$$

2,2',3,3',5,5',6,6'-Octafluor-4,4'-dihydrazinobenzophenon

Versuche zur Thionierung des Decafluorbenzophenons mit den genannten Sulfurierungsmitteln scheiterten. Um diese über eine Derivatisierung der Carbonylfunktion zu erreichen, sollte das Hydrazon aus 11 und wasserfreiem Hydrazinhydrat dargestellt und mit Dischwefeldichlorid umgesetzt werden^[21]. Jedoch reagiert 11 mit N₂H₅OH statt unter gleichzeitiger ortho-Substitution unerwartet rasch und ausschließlich zum para-substituierten 12. Vergleichsweise langsam verläuft hingegen die Umsetzung von C₆F₆ mit N₂H₅OH^[22]. Diese Reaktivität von 11 und Beobachtungen bei weiteren Thionierungsversuchen zeigen, daß die Carbonylfunktion weitgehend inert ist und darüber hinaus Nucleophile bevorzugt die Pentafluorphenyl-Gruppen angreifen. Demgegenüber läßt sich trotz des vermeintlich ähnlichen induktiven Effektes $(F_3C)_2C=O$ mit Ph₃PS zu $[(F_3C)_2]$ $C=S_2$ umsetzen^[23].

Herrn Dr. R. Geist (Heidelberg) danken wir für die massenspektrometrischen Messungen. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. Wir danken der Bayer AG und der BASF AG für Chemikalienspenden.

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Feuchtigkeit und Luft durchgeführt. Die angegebenen Ausbeuten beziehen sich auf die umkristallisierten Produkte. Die Schmelzpunkte sind unkorrigiert. – IR: IFS 88 Bruker. – UV: Perkin-Elmer lambda 9 UV/Vis-Spektrometer. – NMR (interner Standard: TMS für ¹H und ¹³C, CCl₃F für ¹⁹F): Jeol FX-90 Q. – MS: VG 7070. – Elementaranalysen: Mikroanalytisches Laboratorium Beller, Theaterstr. 23, 3400 Göttingen; Mikroanalytische Abteilung der Chemischen Institute der Universität Heidelberg.

2,3,4,5,6-Pentafluorthiobenzophenon (2): 1.36 g (5.0 mmol) 1 und 6.23 g (8.1 mmol) Bis(tricyclohexylstannyl)sulfan werden in 50 ml Toluol gelöst und nachfolgend 4.92 ml (4.92 mmol) BCl₃ in n-Hexan zugegeben. Dann wird 25 h zum Sieden erhitzt. Die Reaktion wird ¹⁹F-NMR-spektroskopisch verfolgt, bis ca. 65% Umsatz nachgewiesen werden können. Nach Abkühlen wird von dem kristallisierten Chlortricyclohexylstannan dekantiert, zur Trockne eingeengt und dreimal mit 10 ml wasserfreiem MeOH extrahiert. Nach erneutem Eindampfen wird in wenig Pentan aufgenommen, auf eine Kieselgelsäule (32–63 µm, 60 Å, Länge 35 cm, Durchmesser 3 cm) gebracht und mit reinem Pentan eluiert ($R_f = 0.28$). Nun wird wiederum eingedampft und unter Ar aus wenig wasserfreiem Pentan bei -20°C kristallisiert. Ausb. 7.3 g (56%), blaue Kristalle, Schmp. 36 °C. – IR (KBr): $\tilde{v} = 1652 \text{ cm}^{-1}$ (s), 1593 (s), 1523 (vs), 1494 (vs), 1448 (s), 1328 (s), 1254 (vs), 988 (vs), 966 (s), 759 (s), 681 (s). - UV (EtOH): λ_{max} (lg ε) = 206.7 nm (3.887), 230.9 (3.853), 327.3 (4.164), 605.6 (1.826). - ¹H-NMR (CDCl₃): $\delta = 7.32 - 7.90$ (m). - ¹⁹F-NMR $(CDCl_3)$: $\delta = -141.8$ (m, 2 F, o-F), -154.0 (m, 1 F, p-F), -161.5(m, 2 F, *m*-F). - ¹³C-NMR (CDCl₃): $\delta = 122.5$ (m), 128.1 (s), 129.0 (s), 134.4 (s), 135.0 (m), 138.9 (m), 140.1 (m), 143.9 (m), 144.1 (s), 145.1 (m), 219.7 (s). - MS (70 eV), m/z (%): 288 (100) [M⁺], 121 (73.5). - C₁₃H₅F₅S (288.2): ber. C 54.17, H 1.75, F 32.96, S 11.12; gef. C 54.18, H 1.72, F 32.6, S 11.20.

Tab. 1. Einzelheiten zu den Kristallstrukturanalysen

	9	10
Formel	C ₂₁ H9F ₁₀ OPS ₄ .0.5C7H8	C ₁₃ H ₅ F ₅ OS
Molmasse	672.6	304.2
Kristallsystem	monoklin	monoklin
Raumgruppe	P21/c	P21/n
a [Å]	16.705(12)	14.009(8)
b [Å]	16.785(11)	5.193(3)
с [Å]	20.055(14)	18.491(12)
B [°]	91.83(5)	110.73(5)
Zellvolumen [Å ³]	5621	1258
z	8	4
d [gcm ⁻³]	1.54	1.61
μ [cm ⁻¹]	4.18	2.55
Kristallgröße [mm]	0.2x0.4x0.7	0.2x0.5x0.8
Transmissionsber.	0.91-0.99	0.90-1.00
20 _{max} [°]	50	52
Reflexe		
gemessen	10265	2572
beobachtet	4562	1461
hkl-Bereich	<u>+</u> 19,19,23	<u>+</u> 16,6,22
Verfeinerung		
anisotrop	S, P, F, O, C	S,F,O,C
isotrop	н	н
Zahl der Parameter	654	Ź 0 1
R	0.072	0.049
Rw	0.064	0.052
max. Restelektro-		
nendichte [eÅ ⁻³]	0.4	0.2

1704

[1-(Pentafluorphenyl)ethenyl][1-(pentafluorphenyl)ethyl]disulfan (5): Eine Lösung von 1.44 g (6.85 mmol) 3 und 5.92 g (7.71 mmol) Bis(tricyclohexylstannyl)sulfan in 50 ml CCl4 wird mit 5.14 ml (5.14 mmol) BCl₃ in n-Hexan versetzt und zum Sieden erhitzt. Eine langsam einsetzende Violettfärbung zeigt die Bildung von 4 an. Die unübersichtliche Reaktion wird ¹⁹F-NMR-spektroskopisch verfolgt. Nach ca. 5stdg. Sieden muß abgebrochen werden. Die Lösung enthält laut Integral ca. 25% 4, 40% 3 und nicht bekannte Nebenprodukte. Nun wird wie bei der Aufarbeitung von 2 verfahren und nachfolgend die verbleibende violette Flüssigkeit in eine Kühlfalle umkondensiert, wo sie nach Erwärmen auf Raumtemp. zu farblosen Kristallen reagiert. Ausb. 0.29 g (19%), Schmp. 81 °C. - IR (KBr): $\tilde{v} = 2993 \text{ cm}^{-1}$ (w), 2963 (w), 1656 (w), 1523 (vs), 1499 (vs), 1307 (w), 1085 (s), 988 (vs), 970 (vs), 931 (s). - ¹H-NMR (CDCl₃): $\delta = 1.73$ (d, 3 H, ${}^{3}J_{HH} = 7.4$ Hz), 4.48 (q, 1 H, ${}^{3}J_{HH} = 7.4$ Hz), 5.56 (s, 1 H), 6.04 (s, 1 H). $-{}^{19}$ F-NMR (CDCl₃): $\delta = -140.6$ (m, 2 F, o-F), -141.7(m, 2 F, o-F), -153.5 (m, 1 F, p-F), -155.4 (m, 1 F, p-F), -162.1 (m, 4 F, m-F). - ¹³C-NMR (CDCl₃): 18.3 (s), 39.8 (s), 112.7 (m), 115.4 (m), 121.9 (s), 129.8 (m), 134.9 (m), 137.9 (m), 138.6 (m), 139.8 (m), 141.7 (m), 142.7 (m), 143.7 (m), 146.6 (m), 147.4 (m). - MS (70 eV), m/z (%): 452 (4.5) [M⁺], 195 (100). - C₁₆H₆F₁₀S₂ (452.3): ber. C 42.48, H 1.34, S 14.18; gef. C 42.75, H 1.10, S 14.38.

Experimentelle Daten von 4: 19 F-NMR (CCl₄): -143.3 (m, *o*-F), -154.1 (m, *p*-F), -161.7 (m, *m*-F).

9,10-Dihydro-12-(pentafluorphenyl)-9,10-(epithiomethano)anthracen (7): 10.31 g (25.5 mmol) Lawesson-Reagens (LR) werden mit 4.55 g (25.5 mmol) Anthracen in 180 ml absol. Benzol vorgelegt, 4.98 g (25.5 mmol) 6 zugegeben, und es wird 4 h zum Sieden erhitzt. Man läßt abkühlen, filtriert das überschüssige LR über eine 10-cm-Kieselgelsäule ab und spült mit Petrolether (Siedebereich 60-70 °C)/CH₂Cl₂ (7:2) nach. Das zur Trockne eingeengte Filtrat wird dreimal mit 100 ml MeOH zum Sieden erhitzt, langsam abgekühlt und der ausgefallene Feststoff abfiltriert. Die vereinigten Extraktc werden eingedampft und aus Petrolether (Siedebereich 60-70 °C)/CH₂Cl₂ (7:2) kristallisiert (3.49 g). Die Mutterlauge wird mit dem gleichen Lösungsmittelgemisch über eine Kieselgelsäule

Tab. 2. Atomparameter von 9. \bar{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	z	ប	Atom	x	У	Z	Ū
	0.66735(12)	0.44903(11)	0.03243(9)	0.058	S5	0.71046(13)	0.19409(12)	-0.21669(11)	0.069
S2	0.56625(12)	0.36310(11)	0.13711(9)	0.058	S6	0.84829(13)	0.26547(14)	-0.12906(11)	0.075
S3	0.56227(12)	0.54652(11)	0.14248(9)	0.059	S7	0.69002(12)	0.36018(13)	-0.12933(11)	0.066
S4	0.76381(13)	0.53373(13)	0.16518(11)	0.075	S8	0.70674(14)	0.37210(14)	-0.29651(11)	0.079
P1	0.67606(12)	0.54499(12)	0.10043(9)	0.053	P2	0.66418(13)	0.31029(13)	-0.22417(11)	0.062
F1	0.8108(3)	0.3002(3)	0.1235(2)	0.090	F11	0.7891(3)	0.5246(3)	-0.1625(3)	0.102
F2	0.8582(4)	0.1614(3)	0.0729(3)	0.135	F12	0.8397(4)	0.6403(3)	-0.0790(3)	0.131
F3	0.7592(4)	0.0778(3)	-0.0108(3)	0.143	F13	0.9158(3)	0.6028(4)	0.0384(3)	0.137
F4	0.6117(4)	0.1361(3)	-0.0454(3)	0.134	F14	0.9354(3)	0.4481(4)	0.0734(3)	0.126
F5	0.5643(3)	0.2771(3)	0.0037(2)	0.098	F15	0.8822(3)	0.3319(3)	-0.0058(2)	0.101
F6	0.6162(3)	0.4911(3)	0.3203(2)	0.099	F16	0.8005(4)	0.0660(3)	-0.1483(3)	0.120
F7	0.5118(4)	0.5016(4)	0.4195(2)	0.149	F17	0.8961(5)	-0.0579(4)	-0.1772(5)	0.189
F8	0.3547(4)	0.4671(4)	0.3962(3)	0.154	F18	1.0173(4)	-0.0379(5)	-0.2617(4)	0.198
F9	0.3021(3)	0.4242(3)	0.2721(3)	0.128	F19	1.0427(4)	0.1035(5)	-0.3179(3)	0.179
F10	0.4038(3)	0.4179(3)	0.1718(3)	0.094	F20	0.9469(3)	0.2279(4)	-0.2931(3)	0.120
C1	0.6616(4)	0.3701(4)	0.0965(3)	0.055	C23	0.7996(4)	0.3626(5)	-0.1361(4)	0.063
C2	0.5738(4)	0.4523(4)	0.1891(3)	0.052	C24	0.8166(4)	0.2216(5)	-0.2093(4)	0.063
C3	0.6751(3)	0.6313(2)	0.0491(2)	0.052	C25	0.5587(3)	0.2949(3)	-0.2238(3)	0.061
C4	0.7295(3)	0.6921(2)	0.0644(2)	0.064	C26	0.5223(3)	0.2592(3)	-0.1697(3)	0.062
C5	0.7287(3)	0.7620(2)	0.0267(2)	0.061	C27	0.4397(3)	0.2467(3)	-0.1714(3)	0.069
C6	0.6734(3)	0.7710(2)	-0.0263(2)	0.061	C28	0.3935(3)	0.2699(3)	-0.2272(3)	0.065
C7	0.6189(3)	0.7102(2)	-0.0417(2)	0.077	C29	0.4298(3)	0.3056(3)	-0.2813(3)	0.066
C8	0.6198(3)	0.6403(2)	-0.0039(2)	0.067	C30	0.5124(3)	0.3181(3)	-0.2796(3)	0.065
09	0.6665(3)	0.8366(3)	-0.0659(3)	0.084	031	0.3141(4)	0.2556(4)	-0.2236(3)	0.092
C10	0.7201(6)	0.9008(5)	-0.0526(5)	0.108	C32	0.2638(6)	0.2771(8)	-0.2808(5)	0.126
C11	0.6861(4)	0.2920(3)	0.0662(3)	0.056	C33	0.8333(3)	0.4244(4)	-0.0872(3)	0.064
C12	0.7618(4)	0.2618(3)	0.0830(3)	0.068	C34	0.8228(3)	0.5039(4)	-0.1057(3)	0.080
C13	0.7863(4)	0.1893(3)	0.0564(3)	0.088	C35	0.8499(3)	0.5646(4)	-0.0631(3)	0.093
C14	0.7350(4)	0.1470(3)	0.0130(3)	0.096	C36	0.8876(3)	0.5458(4)	-0.0021(3)	0.094
C15	0.6592(4)	0.1772(3)	-0.0037(3)	0.087	C37	0.8981(3)	0.4662(4)	0.0164(3)	0.085
C16	0.6348(4)	0.2497(3)	0.0229(3)	0.074	C38	0.8710(3)	0.4056(4)	-0.0262(3)	0.073
C17	0.5126(4)	0.4523(3)	0.2434(2)	0.059	C39	0.8698(4)	0.1501(4)	-0.2211(3)	0.070
C18	0.5403(4)	0.4741(3)	0.3072(2)	0.070	C40	0.8568(4)	0.0766(4)	-0.1908(3)	0.091
C19	0.4871(4)	0.4791(3)	0.3592(2)	0.096	C41	0.9066(4)	0.0122(4)	-0.2041(3)	0.116
C20	0.4061(4)	0.4623(3)	0.3474(2)	0.102	C42	0.9694(4)	0.0213(4)	-0.2477(3)	0.131
C21	0.3783(4)	0.4405(3)	0.2837(2)	0.084	C43	0.9824(4)	0.0948(4)	-0.2779(3)	0.112
C22	0.4316(4)	0.4355(3)	0.2317(2)	0.066	C44	0.9325(4)	0.1592(4)	-0.2647(3)	0.091
					C45	0.0854(7)	0.3063(7)	0.3683(8)	0.181
					C46	0.0486(7)	0.3058(7)	0.4297(8)	0.195
					C47	0.0513(7)	0.3736(7)	0.4700(8)	0.423
					C48	0.0908(7)	0.4419(7)	0.4488(8)	0.294
					C49	0.1276(7)	0.4423(7)	0.3873(8)	0.234
					C50	0.1249(7)	0.3745(7)	0.3470(8)	0.163
					C51	0.0740(16)	0.2277(18)	0.3343(13)	0.359

(siehe Aufarbeitung von 2) chromatographiert. Man erhält weitere 2.36 g 7 als farblose Stäbchen ($R_f = 0.20$) und 0.28 g (3.5%) 9 ($R_f = 0.12$) als farblose Kristallrosen. Ausb. 5.85 g (59%), Schmp. 160–163 °C (Zers.). – IR (KBr): $\tilde{v} = 3067 \text{ cm}^{-1}$ (w), 3044 (w), 3029 (w), 2977 (w), 2929 (w), 1654 (s), 1524 (vs), 1496 (vs), 991 (vs), 766 (vs). – ¹H-NMR (CDCl₃): $\delta = 4.63$ (d, 1 H, ³ $J_{HH} = 2.6$ Hz), 4.96 (m, 1H), 5.32 (s, 1H), 7.04–7.48 (m, 8H). – ¹⁹F-NMR (CDCl₃): $\delta = -140.1$ (m, 2 F, *o*-F), -155.9 (m, 1 F, *p*-F), -162.9 (m, 2 F, *m*-F). – ¹³C-NMR (CDCl₃9: $\delta = 43.6$ (s), 46.3 (s), 51.8 (s), 114.0 (m), 122.0 (s), 122.7 (s), 124.6 (s), 125.4 (s), 126.39 (s), 126.42 (s), 127.1 (s), 127.4 (s), 135.0 (m), 137.7 (m), 137.8 (s), 139.9 (m), 141.2 (s), 142.4 (s), 142.5 (s), 142.7 (m), 147.9 (m). – MS (70 eV), *m/z* (%): 390 (0.8) [M⁺], 211 (11.1), 178 (100). – C₂₁H₁₁F₅S (390.4): ber. C 64.61, H 2.84, S 8.21; gef. C 64.36, H 3.12, S 8.23.

Experimentelle Daten von 8: ¹⁹F-NMR (CD₂Cl₂): $\delta = -140.0$ (m, sehr breit, *o*-F), -151.4 (m, breit, *p*-F), -160.3 (m, breit, *m*-F). -MS (70 eV), charakteristische Fragmente *m*/*z* (%): 456 (1.2) [SCH(C₆F₃)SCH(C₆F₃)S], 404 (3.3) [(F₅C₆)CHSCCH(C₆F₅)], 392 (8.3) [(F₅C₆)CHSCH(C₆F₅)], 360 (7.5) [(F₅C₆)CH=CH(C₆F₅)], 212 (64.8) [F₅C₆CHS], 211 (100) [F₅C₆CS], 168 (9.6) [F₅C₆H], 167 (9.4) [F₅C₆].

2-(4-Methoxyphenyl)-4,6-bis(pentafluorphenyl)-1,3,5,2-trithiaphosphinan-2-sulfid (9): Schmp. 135 °C. – IR (KBr): $\tilde{v} = 2915 \text{ cm}^{-1}$ (w), 2843 (w), 1653 (s), 1593 (vs), 1523 (vs), 1506 (vs), 1265 (s), 1105 (vs), 1000 (vs), 973 (vs), 703 (s). – ¹H-NMR (CDCl₃): $\delta = 3.90$ (s, 3H), 6.83 (d, ${}^{3}J_{PH} = 10.9 \text{ Hz}$), 7.09 (dd, ${}^{4}J_{PH} = 3.6$, ${}^{3}J_{HH} = 9.0 \text{ Hz}$), 8.14 (dd, ${}^{3}J_{HP} = 15.0$, ${}^{3}J_{HH} = 9.0 \text{ Hz}$). – ¹⁹F-NMR (CDCl₃): $\delta = -138.4 \text{ (m, } 2 \text{ F, } o\text{-F}$), -151.1 (m, 1 F, p-F), -160.1 (m, 2 F, m-F). – ¹³C-NMR (CDCl₃): $\delta = 46.9$ (s), 55.7 (s), 111.3 (m), 114.9 (d, ${}^{3}J_{CP} = 16.4 \text{ Hz}$), 121.0 (d, ${}^{1}J_{CP} = 101.2 \text{ Hz}$), 133.8 (d, ${}^{2}J_{CP} = 14.1 \text{ Hz}$), 135.1 (m), 139.6 (m), 140.4 (m), 142.5 (m), 144.7 (m), 147.6 (m), 164.8 (d, ${}^{4}J_{CP} = 3.1 \text{ Hz}$). – ${}^{31}P$ -NMR (CDCl₃): $\delta = 72.8$ (s). – MS (70 eV), m/z (%): 626 (19.5) [M⁺], 202 (100). – C₂₁H₉F₁₀OPS₄ (626.5): ber. C 40.26, H 1.45, P 4.94, S 20.47; gef. C 40.09, H 1.49, P 4.97, S 20.46.

2,3,4,5,6-Pentafluorthiobenzophenon-S-oxid (10): 1.40 g (4.85 mmol) 2 werden in 40 ml CH₂Cl₂ gelöst und bei -5 °C 0.588 g (3.23 mmol) Monoperphthalsäure in 20 ml Et₂O zugetropft. Die blaue Lösung wird nach 30 min bei Raumtemp. wiederholt filtriert und eingeengt. Das Öl wird, in wenig Laufmittel gelöst, auf eine Kieselgelsäule (siehe Aufarbeitung von 2) gebracht und mit Pentan/ CH_2Cl_2 (3:1) eluiert ($R_f = 0.09$). Das unumgesetzte 2 wird zuerst vollständig zurückerhalten. 10 wird aus der 2. Fraktion durch Eindampfen und Aufnehmen in wasserfreiem Pentan unter Ar bei 0°C und unter Lichtausschluß in weißen Nadeln erhalten. Ausb. (bezogen auf eingesetzte Persäure) 0.82 g (83%), Schmp. 63°C. - IR (KBr): $\tilde{v} = 1653 \text{ cm}^{-1}$ (s), 1522 (vs), 1502 (vs), 1119 (s), 1053 (s), 995 (s), 754 (s), 692 (s). $- {}^{1}$ H-NMR (CDCl₃): $\delta = 7.32 - 7.57$ (m). $- {}^{19}$ F-NMR (CDCl₃): $\delta = -134.2$ (m, 2 F, o-F), -149.9 (m, 1 F, p-F), -160.6 (m, 2 F, *m*-F). - ¹³C-NMR (CDCl₃): $\delta = 107.6$ (m), 125.6 (s), 129.7 (s), 130.7 (s), 132.0 (s), 135.6 (m), 140.6 (m), 145.5 (m), 178.6 (s). -MS(70 eV), m/z (%): 304 (100) [M⁺], 211 (27). $-C_{13}H_5F_5OS$ (304.2): ber. C 51.23, H 1.66, F 31.23, S 10.54; gef. C 51.50, H 1.66, F 31.0, S 10.54.

2,2',3,3',5,5',6,6'-Octafluor-4,4'-dihydrazinobenzophenon (12): 7.0 g (19.33 mmol) 11 in 150 ml EtOH werden mit 2.9 g (58.0 mmol) 100proz. N₂H₅OH in 30 ml EtOH bei Raumtemp. tropfenweise versetzt. Sofortige Gelbfärbung und das Abscheiden feiner Kristallnadeln zeigen eine schnelle Reaktion an. Nach 1stdg. Rühren ist die Reaktion laut ¹⁹F-NMR-Spektrum und DC weitgehend abgeschlossen. Der ausgefallene Feststoff kann durch Einengen vermehrt werden. Nach Filtration werden sowohl der Inhalt der Mutterlauge als auch die Kristalle aus MeOH umkristallisiert, und man erhält gelbliche, filzartige Kristalle. Ausb. 4.51 g (60%), Schmp. 192–193 °C (Zers.). – IR (KBr): $\tilde{v} = 3435 \text{ cm}^{-1}$ (s), 3345 (s), 3306 (s), 2974 (w), 1673 (s), 1653 (vs), 1506 (vs), 1396 (s), 1325 (s), 1204 (s), 985 (s), 775 (s). – ¹H-NMR (CDCl₃): $\delta = 7.95$ (s, breit), 4.71 (s, breit). – ¹⁹F-NMR (CDCl₃): $\delta = -145.7$ (d), –160.0 (d). – ¹³C-NMR ([D₆]-DMSO): $\delta = 104.7$ (t), 129.2 (m), 135.1 (m), 139.9 (m), 150.7 (m), 175.8 (s). – MS (70 eV), *m/z* (%): 386 (86.3) [M⁺], 207 (100). – C₁₃H₆F₈N₄O (386.2): ber. C 40.42, H 1.57, F 39.36, N 14.51; gef. C 40.53, H 1.78, F 38.8, N 14.32.

Kristallstrukturanalysen von 9 und $10^{[24,25]}$: Tab. 1 enthält Einzelheiten zu den Strukturbestimmungen, Tab. 2 und 3 die Atomparameter. Die Intensitäten wurden mit einem Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, ω -scan) gemessen. Eine empirische Absorptionskorrektur wurde durchgeführt. Die Strukturlösungen erfolgten mit Direkten Methoden. Für 10 wurden die Nichtwasserstoffatome anisotrop und die Wasserstoffatome in gefundenen Lagen isotrop verfeinert. 9 enthält in der asymmetrischen Einheit neben einem zusätzlichen Molekül Toluol zwei unabhängige Moleküle, die sich nur geringfügig unterscheiden. Die Phenylringe wurden in berechneten Lagen oder als starre Gruppen verfeinert. Die Wasserstoffatome wurden in berechneten Lagen oder als Teil einer starren Gruppen eingegeben mit gruppenweise gemeinsamen isotropen Temperaturfaktoren.

Tab. 3. Atomparameter von 10. \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	z	ប
S1	0.51853(7)	0.2522(2)	0.07507(5)	0.068
01	0.43437(18)	0.2473(6)	-0.00064(12)	0.080
C1	0.4779(2)	0.2895(6)	0.14663(17)	0.053
C2	0.3684(2)	0.3293(7)	0.13294(16)	0.051
C3	0.3100(3)	0.5210(7)	0.08543(18)	0.060
C4	0.2084(3)	0.5510(9)	0.07222(19)	0.070
C5	0.1601(3)	0.3841(10)	0.1063(2)	0.074
C6	0.2149(3)	0.1934(8)	0.1533(2)	0.068
C7	0.3166(3)	0.1687(7)	0.16647(18)	0.058
F1	0.35455(16)	0.6930(4)	0.05319(12)	0.080
F2	0.15542(17)	0.7414(5)	0.02699(13)	0.101
F3	0.06054(15)	0.4124(7)	0.09353(14)	0.111
F4	0.16817(17)	0.0288(6)	0.18590(13)	0.098
F5	0.36688(15)	-0.0247(4)	0.21260(12)	0.078
C8	0.5544(2)	0.2852(7)	0.22608(18)	0.055
C9	0.5463(3)	0.4608(10)	0.2800(2)	0.074
C10	0.6188(4)	0.4696(12)	0.3538(2)	0.098
C11	0.6991(4)	0.3040(13)	0.3740(3)	0.101
C12	0.7085(4)	0.1296(14)	0.3219(3)	0.105
C13	0.6358(3)	0.1185(11)	0.2475(3)	0.083

^[1] Röntgenstrukturanalysen.

- ^[2] W. Sundermeyer, Synthesis 1988, 349-359.
- ^[3] B. Schuler, W. Sundermeyer, Chem. Ber. 1990, 123, 177-184.
 ^[4] J. Voss in Methoden der Organischen Chemie (Houben-Weyl-
- Müller) 4. Aufl., Thieme, Stuttgart, **1985**, Bd. E 11, S. 188. ^[5] M. Cava, M. Levinson, *Tetrahedron* **1985**, 41, 5061-5087
- ^[6] ^[6a] K. Steliou, Acc. Chem. Res. **1991**, 24, 341-350. ^[6b] K. Steliou, M. Mrani, J. Am. Chem. Soc. **1982**, 104, 3104-3106.
- ¹⁷ F. Dean, J. Goodchild, A. Hill, J. Chem. Soc. C 1969, 2192-2195.
- ^[8] O. Korver, J. Veenland, Th. de Boer, Recl. Trav. Chim. Pays-Bas 1965, 84, 304-313.
- ^[9] W. Middleton, W. Sharkey, J. Org. Chem. 1965, 30, 1384-1390.
- ^[10] D. Paquer, Bull. Soc. Chim. Fr. 1975, 1439-1449.
- ^[11] J. Hasserodt, Dissertation, Universität Heidelberg, 1993.

B 1706

- ^[12] R. Okazaki, A. Ishii, N. Fukuda, H. Oyama, N. Inamoto, J. Chem. Soc., Chem. Commun. 1982, 1187-1188.
- ^[13] H. Giles, R. Marty, P. de Mayo, Can. J. Chem. 1976, 54, 537-542
- ^[14] J. Birchall, F. Bowden, R. Haszeldine, A. Lever, J. Chem. Soc. A **1967**, 747-753.
- ^[15] S. Scheibye, R. Shabana, S. Lawesson, *Tetrahedron* 1982, 38, 993-1001.
- [¹⁶] A. Ishii, J. Nakayama, M. X. Ding, N. Kotaka, M. Hoshino, J. Org. Chem. 1990, 55, 2421-2427.
 [¹⁷] E. Keller, SCHAKAL 88b/16, A FORTRAN Program for the
- [^{17]} E. Keller, SCHÁKÁL 88b/16, A FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models, Universität Freiburg, 1988.
- ^[18] B. Zwanenburg, Recl. Trav. Chim. Pays-Bas 1982, 101, 1-27.
- ^[19] G. Veenstra, B. Zwanenburg, Recl. Trav. Chim. Pays-Bas 1976, 95, 195-201.
- ^[20] G. Rindorf, L. Carlsen, Acta Crystallogr., Sect. B., 1979, 35, 1179-1182.

- ^[21] R. Okazaki, K. Inoue, N. Inamoto, *Tetrahedron Lett.* 1979, 38, 3673-3676.
- [22] J. Birchall, R. Haszeldine, A. Parkinson, J. Chem.Soc. (Lond.)
 1962, 4966-4976.
- ^[23] A. Elsäßer, W. Sundermeyer, D. Stephenson, Chem. Ber. 1985, 118, 116-123.
- ^[24] Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57176, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[25] G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, 1976, SHELXS-86, Program for Crystal Structure Solution, Universität Göttingen, 1986.

[43/93]